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KINETICS OF THERMAL EMISSION FROM AN AEROSOL PARTICLE 

N. N. Belov UDC 537.36:541.182.2/3 

One method of supplying seeding electrons during the development of an optical discharge 
plasma is thermal electron emission from a target surface [i]. The case of a massive target 
was studied in [I]. The present paper investigates the special features of thermal electron 
emission from aerosol particles which can be considered as isolated targets. For these there 
is typically an increase of the retarding electric field as the emitted charge increases [2]. 

i. Statement of the Problem. With thermal electron emission a steady state is reached 
in an aerosol as a result of exchange by electrons between particles [2]. The characteristic 
time to reach thermal emission equilibrium in the aerosol is >10 -6 sec [2]. Thus, for t 
10 -6 sec, the problem of thermal electron emission in an aerosol reduces to thermal electron 
emission from an individual particle. In air under normal conditions for a finely dispersed 
fraction of aerosol the electron mean free path in the gas surrounding the particle consider- 
ably exceeds the particle size. And although this relationship breaks down with increase 
of the particle radius, the process of thermal electron emission from an individual particle 
under vacuum can be considered as a first approximation for many actual situations. Suppose 
that the surface temperature of a spherical particle varies according to the formula 

T = T O + ( T k -  T0)[i - - exp( - -k t /T) ] ,  ( 1 . 1 )  

which  i s  a p p r o p r i a t e  f o r  d e s c r i b i n g  t h e  i n f l u e n c e  o f  t h e  p r o c e s s e s  o f  h e a t  o u t f l o w  f rom a 
p a r t i c l e  w i t h  i n t e r n a l  h e a t  s o u r c e s .  I f  we n e g l e c t  t h e  i n f l u e n c e  o f  h e a t  o u t f l o w  f rom t h e  
p a r t i c l e ,  t h e n  t h e  v a r i a t i o n  w i t h  t i m e  o f  t h e  p a r t i c l e  s u r f a c e  t e m p e r a t u r e  can  be a p p r o x i -  
ma ted  by a model  d e p e n d e n c e  o f  t h e  t y p e  

T = T O + (Th  - -  To)( t /~)  ~. ( 1 . 2 )  

Equations (i.i) and (1.2) model the kinetics of the particle temperature for the most impor- 
tant types of particle heating, for example, due to absorption of electromagnetic radiation. 
Relation (1.2) with s = 1 corresponds to heating of a particle in the case when the particle 
heat capacity C and the power supplied to the particle W do not depend on the time. With 
s = 2, Eq. (1.2) describes a linear increase of W with time, with C = const. We can point 
to real-life analogies for other values of the constants of Eqs. (i.i) and (1.2). As an upper 
limit of the temperature T k of the heated particle it is appropriate to take the boiling tem- 
perature T v of the particle material. This is because most of the processes of nonlinear 
optics postulate high-temperature heating of the particles to T v. On the other hand, bipolar 
ionization of the products of evaporation reduce the role of thermal electron emission in 
the charging of a particle at temperatures greater than T v. 

2. Methods of Numerical Investigation of Particle Charge. The kinetics of the variation 
of the charge z of the particle is described by the system of equations 

J ~ - - d z / d t  ~ 4~a2e-a]; ( 2 . 1 )  

T = T ( t ) ,  ( 2 . 2 )  

where J is the flux of thermal emission electrons from the particle surface; j is the current 
density from unit particle surface area, determined by the Richardson-Dushman formula 
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j = 4rune (k~ T)2h-3 exp ( - -A/k~ T); ( 2 . 3 )  

a i s  t h e  p a r t i c l e  r a d i u s ;  m and e ,  e l e c t r o n  mass and c h a r g e ;  h and kb,  t h e  P l a n c k  and B o l t z -  
mann constants; A, work done in removing the electron from the particle. Below, as Eq. (2.2) 
we use one of the equations (i.i) and (1.2). The value of z indicates the number and sign 
of the uncompensated elementary charges of the particle (z > 0 for a positively charged par- 
ticle). The particle surface loses any electron whose kinetic energy at the particle boun- 
dary exceeds the escape work function A 0 from the particle material. An electron leaving 
a charged particle is acted on by the retarding Coulomb field. The flux of thermal electron 
emission from the particle forms electrons whose energy exceeds the effective value of A [2]: 

A ---- A o + e2za -1. ( 2 . 4 )  

The stated problem reduces to a Cauchy problem, that of solving the linear ordinary dif- 
ferential equation dz/dt = f(z, t) in the time interval t e [0, x] with the initial condition 
z(0) = z 0. We have solved the problem numerically. To the solution we applied the Euler 
method, the corrected Euler method, the fourth-order Runge-Kutta method, the first-order Adams 
extrapolation method, the Adams interpolation method, and a difference approximation of the 
Picard method [3-6], using a representation of Eq. (2.1) in finite differences: 

zn+1-=zn + A~[~i=1 ~i (Tin, zm)] 

(T m is a time mesh with step size AT, and z m is the mesh function of the charge). The type 
and number of functions applied in the finite-difference equation have been described in [3- 
6] for each of the methods of solving the differential equation (2.1). The charging kinetics 
was calculated with a step size of i0 -s sec in the time interval [0, I ~sec], at the end of 
which the particle was heated from 300 K to the boiling temperature of the particle material. 
The calculations were performed for particles made of aluminum, copper, iron, silver, gold, 
tungsten, and molybdenum of radii from 10 -6 to 0.i cm (see Table I). The results computed 
by the Picard method for the first stage of the process agree up to the second or third place 
with those obtained by the other methods. However, beginning at t = 0.3-0.5 ~sec, the com- 
puting error in the Picard method grows quickly, increasing to hundreds and thousands of per- 
cent at t = i0 -~ sec. Evidently, this is because the initial approximation of the first itera 
tion (i = 0, z n = z 0) is intrinsically far from the final solution. However, the results 
of computing with the methods of Euler, Runge-Kutta, and Adams show good agreement. For exam- 
ple, with k = I in Eq. (i.i) for aluminum particles of radius 0.i cm, they coincide to better 
than the third place. A certain difference of the values of z n in the region of greatest 
temperature increase (with equality of dz/dt to better than the third place) is due to the 
difference of the difference schemes of these methods, as indicated by the rapid improvement 
of the agreement between them as the time mesh step size is reduced. The high reliability 
of the program developed is confirmed also by the agreement of the results of numerical dif- 

TABLE 1 

Curve num- 
ber in Metals Tv, K A0. 6 eV 
Fig. I [9] [10] 

6 Molybdenum 5073 4,3 

7 ]:ungsten 6t73 4,54 

8 Gold 3t20 4,3 

9 Silver 2436 4,3 

10 Iron 3443 4,31 

ii Copper 3i50 4,4 

12 Aluminum 262i 4,25 
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ferentiation of the problem with results found analytically by methods [see Eq. (3.1)] with 
T = const. Calculations have shown that the distribution with time of the flux of thermal 
electron emission from particles of different metals with identical T(t) dependences are very 

similar (Fig. i). 

Figure 1 shows the calculated variation with time of the flux of electrons from parti- 
cles (a = i0 -s cm) of aluminum - curves 7 and ii, of iron - curves 4 and i0, of copper - curve 
3, of silver - curves 8 and 12, of gold - curve 9, of tungsten - curves 1 and 5, and of molyb- 
denum - curves 2 and 6. The variation with time of the particle temperature was computed 
using Eq. (1.2) with s = 0.5 (curves 1-4, 7, and 8) and for s = 2 (curves 9-12, 5, and 6). 

Single units on the ordinate axes for curves i-4, 7, and 8 correspond to 108 sec -I, and for 
curves 9, 12, 5, and 6, 2"108 sec -I It can be seen that particles of the different metals give 
closely adjacent thermal emission curves. However, the change of the form of the kinetics of heat- 
ing substantially changes the form of the dependence J(t) for any particle considered. The maxi- 
mum electron flux arrives at the beginning of the high-temperature part of the heating pulse. 
In most cases at the concluding stage of the pulse the rapidly increasing Coulomb field basi- 
cally blocks the emission. The charge z k which is reached on the particle at the end of the 
pulse is determined primarily by the particle temperature at the end of the pulse, and de- 
pends slightly on T(t). This position is illustrated in Fig. 2, which shows the variation 
of z k with increase of the time t m for the particle temperature to relax to the final value 
T v [t m decreases with increase of k in Eq. (i.i)]. The data of Fig. 2 were obtained for par- 
ticles of molybdenum, copper, iron, and aluminum (lines 1-4) of radius 0.i cm, heated to the 
boiling temperature of the corresponding material in 10 -6 sac. It can be seen that for k z 3 
the value of z k is practically independent of the particle heating rate. 

Figure 3 shows a representation of the dependence of z k on the final material temperature 
of a particle of radius 0.1 cm, and on this scale we do not see differences of z k for parti- 
cles of the same radius but different metals (aluminum, copper, iron, silver, and gold). 
Therefore, the curves can be used to estimate the charge of any of these metals. Curve 3 
was obtained by numerically solving the system (i.i), (2.1)-(2.4) for particles of these metals, 
heated in 10 -6 sac from 300 K to a final temperature T (the abscissa axis of Fig. 3) for k = 
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5.7 and i0. It can be seen that in the high-temperature region the dependence z(T k) becomes 
almost linear, while at low temperatures it has an exponential character. 

3. The particle radius has a strong influence on z k. Curve 4 of Fig. 4 shows the depen- 
dence Zk(O) obtained by solving the system of equations (i.i), (2.1)-(2.4) for molybdenum 
particles heated from T o = 300 K to T v in a time of 10 -6 sac (k = I). It can be seen that 
for the function Zk(a) a linear approximation is appropriate, i.e., the charge is proportion- 
al to the particle radius. The flux of thermal electron emission from the particle is also 
proportional to its radius (other conditions being equal). We note that for T(t) = const, 
the system (2.1)-(2.4) has an analytical solution which with the initial condition z 0 = 0 
has the form 

z(t) = akbTe-Zln [BatT exp (--Ao/kbT) + t ]  ( 3 . 1 )  

[B = mkb(4~e)ih-3]. In cgs units B = 1.575004"i019. If the expression under the logarithm 
sign is very little different from i, the charge is proportional to the particle area: 

zl(t ) = Btk b ~T)2e -2 exp (--Ao~ b T). ( 3 . 2 )  

But if the expression under the logarithm sign is appreciably greater than i, then the depen- 
dence of the particle charge on its radius differs from linearity by the logarithmically 
small correction: 

z2(t) = akbTe -~ [--Ao/kbT + In (BatT)]. ( 3 . 3 )  

The numerically computed values of z k agree very satisfactorily with values of z k cal- 
culated from Eq. (3.1) with T = T k and t = ~. Curves 1 and 2 in Fig. 3 show values of z k 
computed from Eqs. (3.1) and (3.2), and curve 2 for T ~ 1500 K shows values computed from 
Eq. (3.3). It can be seen that Eq. (3.1) gives a satisfactory value of the particle charge 
in all temperature regions, that Eq. (3.2) is satisfactory at low temperatures, and that Eq. 
(3.3) is satisfactory at high temperatures. Figure 3 (curve 4) also shows the particle charge 
dependence evaluated from the formula 

z = akbTe-2 ( 3 . 4 )  

It can be seen that this evaluation gives too great an error, as a rule. In Fig. 4, 
the numerically computed values of zk(a) (curve 4) are compared with results from Eqs. (3.1)- 
(3.4), on lines 2, I, 3, and 5. Curve 1 is at a considerable distance from the exact solu- 
tion because the low-temperature approximation of Eq. (3.2) is inappropriate at the tempera- 
ture considered. It follows from Eq. (3.1) that if the particle temperature is unchanged, 
then: a) z depends logarithmically weakly on time, and b) z is proportional to the particle 
radius and temperature (to within a logarithmically weak correction). The data presented 
above show that these special features are inherent in the solution z(t) of the system (2.1)- 
(2.4) for T(t) ~ const if, beginning at some time, the increase of T becomes negligibly small. 
Thus, Eq. (3.1) can be used to evaluate the particle charge, by substituting there the maxi 
mum value of particle temperature. The value from Eq. (3.1) can be used in the case where 
the time t of particle exposure at high T exceeds the time to attain the quasiequilibrium 
charge 

~ h :  e-2ha~)-~(akbmT) -1 exp (Ao~bT). 

4. Absorption of Electroma~netic Radiation by Jumping Electrons. The particle bounda- 
ries continuously intersect electrons flying out from the particle. This electron flux can 
be divided into two groups. In the first group we put electrons whose energy s is sufficient 
to overcome the effective exit work function, g > A. This electron flux J also contains the 
self-thermal electron emission from the particles, considered above. The current density 
of the thermal electron emission is found from the Richardson--Dushman formula (2.3), in which 
the exit work function A is determined by Eq. (i.i). 

In the second group we put electrons with energy e ~ [A0, A], and a characteristic spe- 
cial feature of their motion is the return of each to the particle surface at some time after 
their release from a particle. Thus, electrons of this group can be called jumping electrons. 
During their motion above the particle surface the jumping electrons absorb part of the in- 
cident radiation, which is then given to the particle when the electron falls back down. 
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We can evaluate the number of these electrons leaving the particle per unit time from 
the formula 

Jp = [ i - - e x p  (--e2z/akbT)]~akb)2mh -3 exp (--Ao~bT)T2t.  

Each jumping electron absorbs a certain energy AE from the electromagnetic field and 
transmits it to the particle. From analogy with the inverse decelerating radiation [7, p. 
21] it can be shown that one jump of an electron in the charged particle field increases its 
energy by 

he = 2%m 2 (~2 + t~2)-1, 

where E c = e2E02/(2m~ 2) is the kinetic energy of oscillations of the electron in an electro- 
magnetic field of intensity E0; m is the circular frequency of the electromagnetic wave; and 
tp is the time of motion of the electron in the Coulomb field of the particle. The energy 
absorbed by the jump electrons in the electromagnetic field is expended in heating of the 
particle upon capture of the electron at the end of its trajectory, or in ionizing the gas 
molecules surrounding the particle. Both of these channels for conversion of the incident 
radiation energy lead to the development of an optical discharge (the first by a mechanism 
of thermal breakdown of the particle, and the second by the traditional mechanism of avalanche 
ionization in which the charged particle plays the role of the basic scatterer [8]). Simple 
estimates in conditions characteristic for the development of an optical discharge under the 
action of brief infrared pulses show that some finite number of electrons that are resonant 
with respect to the frequency of the laser radiation communicate enough energy to a submicron 
particle to cause thermal breakdown. The number N of such electrons necessary for thermal 
breakdown of a particle can be estimated as follows: 

N = O/3)na~C?Tvtp (AeJ-1 ( 4 . 1 )  

(Here  C, y ,  and T v a r e  t h e  s p e c i f i c  h e a t ,  d e n s i t y ,  and b o i l i n g  t e m p e r a t u r e  o f  t h e  m a t e r i a l  
o f  a p a r t i c l e  o f  r a d i u s  a ) .  A c c o r d i n g  t o  Eq. ( 4 . 1 ) ,  a p a r t i c l e  o f  r a d i u s  10 -s  m (C = 1 J /  
deg ,  y = 1 g/cm 3, and T v = 3 " I 0  3 K) l o c a t e d  in  a r a d i a t i v e  f i e l d  w i t h  t = 10 .6  ~m (z = 10 -s  
sec, I = i0 s W/cm2), is heated to T v ~ 3"103 by three jumping electrons, if their jump time 
is tp = (5-6)'10 -15 sec. Since at the initial particle temperature (-300 K) the thermal emis- 
sion from the particle is negligibly small, the development of a thermal emission instability 
precedes particle heating due to self-absorption of radiation by the particle material or 
auto-electronic or multiphoton emission of electrons at the beginning of the action of the 
electromagnetic radiation on the particle. 
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